Exercise 14

A stone is dropped into a lake, creating a circular ripple that travels outward at a speed of $60 \mathrm{~cm} / \mathrm{s}$. Find the rate at which the area within the circle is increasing after (a) 1 s , (b) 3 s , and (c) 5 s . What can you conclude?

Solution

The area of a circle is

$$
A(r)=\pi r^{2}
$$

Take the derivative with respect to time by using the chain rule.

$$
\frac{d A}{d t}=\frac{d A}{d r} \frac{d r}{d t}=(2 \pi r) \frac{d r}{d t}
$$

Note that the radius (in centimeters) after t seconds have passed is $r(t)=60 t$, and the rate at which the radius is increasing (in centimeters per second) is $d r / d t=60$.

$$
\frac{d A}{d t}=2 \pi(60 t)(60)=7200 \pi t
$$

The rate at which the area is increasing after 1 s is

$$
\left.\frac{d A}{d t}\right|_{t=1}=7200 \pi(1)=7200 \pi \mathrm{~cm}^{2} / \mathrm{s} .
$$

The rate at which the area is increasing after 3 s is

$$
\left.\frac{d A}{d t}\right|_{t=3}=7200 \pi(3)=21600 \pi \mathrm{~cm}^{2} / \mathrm{s} .
$$

The rate at which the area is increasing after 5 s is

$$
\left.\frac{d A}{d t}\right|_{t=3}=7200 \pi(5)=36000 \pi \mathrm{~cm}^{2} / \mathrm{s} .
$$

Notice that the rate of increase of the area increases linearly in t.

